GRAPHICAL ABSTRACTS

Tetrahedron, 1990, 47, 583

ANODIC AMIDE OXIDATIONS: FUNDAMENTAL STUDIES CONCERNING THE ANNULATION OF SIX- AND SEVEN-MEMBERED RINGS ONTO AMINES. Kevin D. Moeller.*

Scott L. Rothfus, and Poh Lee Wong, Department of Chemistry, Washington University, St. Louis, MO 63130.

The compatibility of olefinic and acetylenic nucleophiles with an electrochemically based procedure for annulating rings onto amines and amino acid derivatives has been examined.

xxi

xxii

	Tetrahedron, 1990 , 47, 799
ANODIC OXIDATION OF DIARYLACETYLENES AND DIARYLDIACETYLENES : ELECTROSYNTHESIS OF DIAROYL-STILBENES AND ACETYLENIC α - AND γ -DIKETONES. Michel CARIOU, Laboratoire d'Electrochimie Organique, U.R.A. CNRS n° 439 Université Catholique de l'Ouest, B.P. 808, 49005 Angers Cedex, France. At a graphite plate anode, in MeCN – LiClO ₄ , the electrooxidation of diarylacetylenes gives mostly diaroylstilbenes, and the electrooxidation of diaryldiacetylenes gives a mixture of acetylenic α - and γ -diketones : 2 Ar-C=C-Ar \longrightarrow Ar CO (Ar) C = C (Ar) CO Ar 2 Ar-C=C-C=C-Ar \longrightarrow Ar CO-CO-C=C-Ar + Ar CO-C=C-CO Ar	
	Tetrahedron, 1990 , 47, 809
A PRACTICAL SYSTEM FOR MANGANESE (III) - MEDIATED ELECTROCHEMICAL SYNTHESIS OF SORBIC ACID PRECURSORS. J.P. Coleman, R.C. Hallcher, D.E. McMackins, T.E. Rogers, J.H. Wagenknecht Monsanto Co., 800 N. Lindbergh Blvd., St. Louis, Mo. 63167 An electrochemical development study of the formation of acetoxyhexenoic acids, (I) and (II), and γ -vinyl- γ -butyrolactone from butadiene and acetic acid. $+ CH_3CO_2H$ Anodic Oxidation $Mn^{2+}-Cu^{+}$ $Mn^{2+}-Cu^{+}$ $Mn^{2+}-Cu^{+}$ OAc (II)	
	Tetrahedron, 1990 , 47, 831
NOVEL CARBON-CARBON BOND FORMATION USING MANGANESE(III) ACETATE AS AN ELECTROCHEMICAL MEDIATOR Ryushi SHUNDO, Ikuzo NISHIGUCHI [*] , Yoshiharu MATSUBARA, and Tsuneaki HIRASHIMA $() + R^{1}-cH_{2}-R^{2} \xrightarrow{-\pi} () + R^{1}-cH_{2}-R^{2} \xrightarrow{-\pi} () + R^{1}-R^{2} = COOEt : R^{1} = R^{2} = COOEt$ $R^{1}-R^{2} \xrightarrow{-\pi} () + R^{1}-cH_{2}-R^{2} \xrightarrow{-\pi} () + R^{2}-COOEt : R^{1} = R^{2} = COOEt$ $R^{1}-R^{2} \xrightarrow{-\pi} () + R^{2}-COOEt \xrightarrow{-\pi} () + R^{2}-COOEt : R^{1} = R^{2} = COOEt$ $R^{1}-R^{2} \xrightarrow{-\pi} () + R^{2}-COOEt \xrightarrow{-\pi} () + R^{2}-COOEt : R^{1} = R^{2} = COOEt$ $R^{1}-R^{2} \xrightarrow{-\pi} () + R^{2}-COOEt \xrightarrow{-\pi} () + R^{2}-COOEt : R^{2$	

xxvii

Tetrahedron, 1990, 47, 895

ELECTROCHEMICAL OXIDATION OF KETONES IN METHANOL IN THE PRESENCE OF ALKALI METAL BROMIDES Gennady I. Nikishin*, Michail N. Elinson, and Irina V. Makhova.

N.D. Zelinsky Institute of Organic Chemistry, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

-e R-C-Me → R-C-OMe II NaBr, MeOH II O	PhCHR ¹ CCH ₂ R ² $\xrightarrow{-e}$ PhCHR ¹ CHR ² COMe $\bigcup_{0}^{ }$ NaBr, MeOH $\bigcup_{0}^{ }$
R = alkyl, aryl	R^1 , R^2 = alkyl